Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Data Inf Manag ; 7(2): 100043, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2328387

ABSTRACT

Apart from the direct health and behavioral influence of the COVID-19 pandemic itself, COVID-19 rumors as an infodemic enormously amplified public anxiety and cause serious outcomes. Although factors influencing such rumors propagation have been widely studied by previous studies, the role of spatial factors (e.g., proximity to the pandemic) on individuals' response regarding COVID-19 rumors remain largely unexplored. Accordingly, this study, drawing on the stimulus-organism-response (SOR) framework, examined how proximity to the pandemic (stimulus) influences anxiety (organism), which in turn determines rumor beliefs and rumor outcomes (response). Further, the contingent role of social media usage and health self-efficacy were tested. The research model was tested using 1246 samples via an online survey during the COVID-19 pandemic in China. The results indicate that: (1)The proximity closer the public is to the pandemic, the higher their perceived anxiety; (2) Anxiety increases rumor beliefs, which is further positively associated rumor outcomes; (3) When the level of social media usage is high, the relationship between proximity to the pandemic and anxiety is strengthened; (4) When the level of health self-efficacy is high, the effect of anxiety on rumor beliefs is strengthened and the effect of rumor beliefs on rumor outcomes is also strengthened. This study provides a better understanding of the underlying mechanism of the propagation of COVID-19 rumors from a SOR perspective. Additionally, this paper is one of the first that proposes and empirically verifies the contingent role of social media usage and health self-efficacy on the SOR framework. The findings of study can assist the pandemic prevention department in to efficiently manage rumors with the aim of alleviating public anxiety and avoiding negative outcomes cause by rumors.

2.
Adv Healthc Mater ; : e2300673, 2023 May 03.
Article in English | MEDLINE | ID: covidwho-2320621

ABSTRACT

The viral spike (S) protein on the surface of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) receptors on the host cells, facilitating its entry and infection. Here, functionalized nanofibers targeting the S protein with peptide sequences of IRQFFKK, WVHFYHK and NSGGSVH, which are screened from a high-throughput one-bead one-compound screening strategy, are designed and prepared. The flexible nanofibers support multiple binding sites and efficiently entangle SARS-CoV-2, forming a nanofibrous network that blocks the interaction between the S protein of SARS-CoV-2 and the ACE2 on host cells, and efficiently reduce the invasiveness of SARS-CoV-2. In summary, nanofibers entangling represents a smart nanomedicine for the prevention of SARS-CoV-2.

3.
Heliyon ; 9(3):e13963-e13963, 2023.
Article in English | EuropePMC | ID: covidwho-2261573

ABSTRACT

Since the outbreak of COVID-19 at the end of 2019, the Chinese government has imposed strict control measures on affected cities, which may have impacted the spatial and temporal pattern of carbon dioxide emissions. This paper follows the quantitative analysis method, experimental method, mathematical method, etc., and quantitatively studies the impact of the epidemic on China's carbon emissions. The combination model of ARIMA and BP neural network is used to predict the actual impact of epidemic situation on China's carbon emissions in 2020, and the spatial autocorrelation analysis method is used to analyze the spatial characteristics of China's provincial carbon emissions, which indicate that China's carbon emissions have consistently maintained a growth trend, from 2.05 billion tons in 2005 to 3.89 billion tons in 2019. Furthermore, the growth rate of carbon emissions and the changing trend of the emission intensity are the same, dropping from 12% in 2005 to 3% in 2019. The emission intensity also dropped from 1.1 in 2005 to 0.6 in 2019, indicating that the trend of increasing carbon emissions in northern provinces and Xinjiang changed significantly from 2005 to 2019. The overall carbon emissions of the 30 provinces in 2020 are predicted to be 4.068 billion tons, while the actual energy carbon emissions will be 3.921 billion tons, suggesting that the pandemic significantly reduced carbon emissions. Among affected provinces, carbon emissions from Hubei, Jiangsu, Shandong, Shanghai, and other places changed significantly, from 0.99, 0.25, 0.43, and 76 million tons in 2019 to 0.88, 0.24, 0.42, and 72 million tons in 2020, respectively. The results show a positive spatial correlation between China's provincial carbon emissions;the high-high and bottom-high agglomeration are mainly among the provinces, mainly distributed in North China and East China. Although the pandemic seriously impacts China's carbon emissions, each province's spatial relationship has not changed significantly.

4.
Biosensors (Basel) ; 12(10)2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2071230

ABSTRACT

In March 2020, the World Health Organization (WHO) declared COVID-19 a pandemic, and the spike protein has been reported to be an important drug target for anti-COVID-19 treatment. As such, in this study, we successfully developed a novel electrochemical receptor biosensor by immobilizing the SARS-CoV-2 spike protein and using AuNPs-HRP as an electrochemical signal amplification system. Moreover, the time-current method was used to quantify seven antiviral drug compounds, such as arbidol and chloroquine diphosphate. The results show that the spike protein and the drugs are linearly correlated within a certain concentration range and that the detection sensitivity of the sensor is extremely high. In the low concentration range of linear response, the kinetics of receptor-ligand interactions are similar to that of an enzymatic reaction. Among the investigated drug molecules, bromhexine exhibits the smallest Ka value, and thus, is most sensitively detected by the sensor. Hydroxychloroquine exhibits the largest Ka value. Molecular docking simulations of the spike protein with six small-molecule drugs show that residues of this protein, such as Asp, Trp, Asn, and Gln, form hydrogen bonds with the -OH or -NH2 groups on the branched chains of small-molecule drugs. The electrochemical receptor biosensor can directly quantify the interaction between the spike protein and drugs such as abidor and hydroxychloroquine and perform kinetic studies with a limit of detection 3.3 × 10-20 mol/L, which provides a new research method and idea for receptor-ligand interactions and pharmacodynamic evaluation.


Subject(s)
Bromhexine , COVID-19 , Metal Nanoparticles , Humans , Spike Glycoprotein, Coronavirus/chemistry , Hydroxychloroquine/pharmacology , SARS-CoV-2 , Molecular Docking Simulation , Kinetics , Ligands , Gold , Antiviral Agents/pharmacology
5.
Atmosphere ; 12(12):1591-1591, 2021.
Article in English | Academic Search Complete | ID: covidwho-1595333

ABSTRACT

The impact of human-caused environmental pollution and global climate change on the economy and society can no longer be underestimated. Agriculture is the most directly and vulnerably affected sector by climate change. This study used beans, the food crop with the largest supply and demand gap in China, as the research object and established a panel spatial error model consisting of multiple indicators of four factors: climate environment, economic market, human planting behavior and technical development level of 25 provinces in China from 2005 to 2019 to explore the impact of climate environmental changes on the yields of beans. The study shows that: (1) The increase in precipitation has a significant positive effect on bean yields;however, the increase in temperature year by year has a significant negative effect on bean yields;(2) carbon emissions do not directly affect bean production at present but may have an indirect impact on bean production;(3) artificial irrigation and fertilization behavior on bean production has basically reached saturation, making it difficult to continue to increase bean yields and (4) the development of technology and human activity is a mixed blessing, and the consequent inhibiting effects on bean production are currently unable to offset their promoting effects. Thus, when it comes to bean cultivation, China should focus mainly on the overall impact of environmental changes on its production, rather than technical enhancements such as irrigation and fertilization. [ FROM AUTHOR] Copyright of Atmosphere is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

SELECTION OF CITATIONS
SEARCH DETAIL